skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pena, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system. We focus on toxic cardiac glycosides (CGs) from milkweeds (Asclepiasspp.), which inhibit animal Na+/K+-ATPases, and two CG-resistant insects, the large milkweed bugOncopeltus fasciatusand a CRISPR-editedDrosophila melanogaster. Both have CG-resistant Na+/K+-ATPases through a set of key amino acid substitutions, which facilitate CG sequestration. We conducted infection experiments with entomopathogenic nematodes (Steinernema carpocapsae,S. feltiae, andS. hermaphroditum) as natural enemies on host insects containing mixtures of milkweed-derived CGs or purified CGs (ouabain, digoxin, and digitoxin) that vary in toxicity. The nematodeS. carpocapsaeis known to occur in soil near milkweed plants and naturally has several of the same Na+/K+-ATPase substitutions as the milkweed bugO. fasciatusand ourDrosophilamutant. This nematode not only exhibited higher fecundity in hosts that carried CGs relative to the other nematode species (which have sensitive Na+/K+-ATPases), but also showed attraction to mixtures of CGs in milkweed root extracts and to purified ouabain when tested on agar plates. A coiling phenotype, which is a symptom of neurotoxicity, was observed more frequently inS. feltiaeandS. hermaphroditumupon exposure to milkweed root extracts than inS. carpocapsae. Nematode behavior was further tested in sand, and while attraction to CGs was found forS. carpocapsae, nematodes of the other species tended to migrate away from milkweed root chemicals. Thus,S. carpocapsaecan tolerate CGs and may use these as chemical cues to locate insect hosts that live on or around milkweed plants. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026